On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay

On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay

  一种基于微流控的仿生方法,用于制造体外3D肝小叶样微组织。

Introduction

  肝组织工程在过去的几十年里一直吸引着科学界、制药界和临床界的广泛关注,因为它有可能为肝功能衰竭的患者提供功能支持/替代,或者为研究肝细胞功能、肝病以及药物代谢和毒性提供体外组织模型。传统的肝组织工程技术主要采用“自上而下”的策略,其中肝细胞被接种在一个预成型的聚合物支架上,在生理线索的帮助下定植于支架上,并生成合适的细胞外基质(ECM)和形态结构。

  尽管通过研究更具有仿生性的框架(如去细胞的ECM支架)取得了重要进展,自上而下的方法通常难以复制复杂的肝组织微结构特征。与之相比,自下而上的方法被提出以改善工程组织中的细胞控制,通过合并简化的构件来制造分层的组织。

  这种情况下,一种预先构建的、类似于肝小叶(一种由肝细胞索和肝血窦状放射状排列形成的精心安排的肝单位)的肝组织构件是非常可取的。此前已经有工作使肝细胞形成线性排列的肝索样结构,一般来说,这些体外肝细胞培养系统或可用于研究毒性的具体方面。然而,这些系统未能组织异质细胞类型,以模仿高级的肝脏架构(即肝血窦),可以保留细胞-细胞和细胞-ECM的相互作用。

  本研究提出了一个微流控仿生方法用于在体外制造3D肝小叶样微组织,该组织由放射状图案化的肝索状网络和内在的肝血窦状网络组成。功能表征显示该3D仿生肝小叶样微组织在相I/II阶段保持了更高的基础肝特异性功能(也就是CYP-1A1/2和UGT活性)

Figure 1. Biomimetic construction of a 3D liver lobule-like microtissue

  • (a)肝脏结构的示意图。
  • (b)肝血窦由肝细胞和内皮细胞组成,呈索状排列,相当于(a)中的区域。
  • (c)仿生微流控装置的三维布局。该装置有一个六边形的细胞培养室,其中有一个放射状的微图案柱阵列和一个气动的微阀系统(PμS,用红色标示)。
  • (d)放大图像显示了装置的设计细节,相当于(c)中的区域。
  • (e)3D仿生微组织的微工程构建、功能评价和药理应用实验流程。

Figure 2. Schematic diagram illustrating the sequential procedure for constructing the biomimetic microtissue

  • (a)将HepG2细胞(黄色粒子)和胶原的冰冷混合物轻柔地引入腔室。
  • (b)通过微阀系统形成肝索样网络。
  • (c)HAECs(蓝色粒子)添加入入口。
  • (d)通过内阀的关闭被动流入预形成的凝胶通道,被外阀所阻挡。

Figure 3. Morphological demonstration of the 3D liver lobule-like microtissue

  • (a)制造的肝小叶样微组织由肝索样网络(i)和肝血窦样网络(ii)组成。(i)和(ii)分别由24张图像利用图像处理软件合成。(iii)为(i)和(ii)的重叠图。
  • (b)单个肝血窦样结构的放大图,其中HAECs与HepG2细胞形成的相应的肝索排成一排。
  • (c)肝血窦样结构的三维视图。

Figure 4. Hepatic enzyme activity of the biomimetic microtissue

  • (a)酶活性检测实验的时间流程。对经过 72 h 培养后三种培养模型分别给予不同药物的不同剂量24 h处理。药物处理后,测定酶活性。
  • (b)为更好地表征肝小叶样肝脏芯片的酶活力,实验中定义和构建了三种 HepG2 细胞培养模型,即 Hep-2D 模型、Hep-3D 模型和肝小叶样肝脏芯片模型。
  • (c)CYP-1A1/2和UGT活性。结果显示,肝小叶样微组织比Hep-3D培养模型保持较高的基础酶活性,而后者又高于 Hep-2D 培养模型。经过诱导剂(如奥美拉唑(OME)和利福平(RIF))或抑制剂(环丙沙星(CPFX)和丙磺舒(PBD))处理后,肝小叶样肝脏芯片的 CYP-1A1/2 和 UGT 酶活力表现出显著增加或减少。

Figure 5. Drug sensitivity of the biomimetic microtissue

  • (a)药物敏感性分析实验的时间流程。
  • (b)APAP诱导的急性肝毒性。
  • (c)INH诱导的急性肝毒性。
  • (d)RIF诱导的急性肝毒性。
  • (e)三种培养组。

MTT试验原理是活细胞线粒体中的琥珀酸脱氢酶NADPH还原四甲基偶氮唑蓝MTT生成紫色结晶沉淀-甲瓒化合物,而死细胞无此功能。

FDA,中文名为二乙酸荧光素,是一种具细胞膜渗透性的酯酶底物,常用作细胞活力分析。不仅可以测定酯酶活力,因FDA需要在酯酶的催化下才能活化产生绿色荧光;而且还可用来鉴定细胞膜完整性,只有在完整膜内才能维持荧光。也可用于流式分析。最大激发波长(Ex)和发射波长(Em)分别为490nm和526nm。

Figure 6. Detection of drug–drug interactions via the biomimetic microtissue

  APAP,作为经典肝毒性药物模型,被选为目标测试药物。一般情况下,即使用正常剂量时,约 90%的APAP经相II肝代谢酶(UGT)等转化为无毒的化合物,并排泄到胆汁或尿液中。余下的约 5~9%的APAP由相I肝代谢酶,即细胞色素P450酶(CYP-1A1/2),代谢生成N-乙酰基-对苯醌亚胺(NAPQI)。NAPQI可以与细胞内的谷胱甘肽结合,被有效地解毒。然而,如果过量服用 APAP,肝细胞内将代谢产生过量的NAPQI,这些NAPQI不仅会耗尽细胞内的谷胱甘肽,而且与细胞内蛋白共价结合、诱导的氧化应激,最终导致肝损伤。

  • (a) APAP 的肝脏代谢途径和不同药物的潜在影响。
  • (b)药物相互作用检测试验的时间流程。
  • (c)由此产生的肝细胞活性。

  APAP-OME药物组合处理增加了HepG2细胞的死亡率,而APAP-CFPX药物组合处理提高了细胞的存活率。同样,RIF预处理减轻了APAP诱导的肝毒性,而PBD预处理加剧了APAP的肝毒性作用。结果表明,肝小叶样肝脏芯片可以于体外再现CYP-1A1/2或UGT介导的药物间相互作用。这些结果证实了肝小叶样肝脏芯片可以作为一个可靠、有用的组织模型用于潜在的药物不良反应分析研究。

Conclusion

  • 开发了一种基于微流控的仿生肝小叶样微组织。利用气阀可以在微尺度分辨率下以3D方式操纵不同的细胞类型,即肝细胞(HepG2细胞)和非实质细胞(HAECs)。
  • 代谢活力试验表明,肝小叶样微组织比2D培养具有更好的CYP-1A1/2和UGT酶活力,同时也可以应答与这两类酶的特定诱导剂和抑制剂。
  • 肝毒性试验表明,肝小叶样微组织比2D培养状态下更敏感,可以有效响应不同药物的肝毒性。
  • 药物相互作用分析试验表明,肝小叶样微组织于体外再现了CYP-1A1/2或UGT介导的药物间相互作用,证实了其可以作为一个可靠、有用的组织模型用于潜在的药物不良反应分析研究。

Reference

Ma C, Zhao L, Zhou E-M, et al. On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay[J]. Analytical Chemistry, 2016, 88(3): 1719–1727.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×